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0. Non-Technical Sulmmary

InL this paper, a single device shock model is considered. The

model we study consists of a single device which is subject to shocks

from the outside environment. An example is an electrical device which

occasionally experiences a large electrical surge due to a malfunction

in the electrical system.

These shocks will eventually render the device inoperable. We

consider the class of devices which will almost certainly be able to

endure large numbers of shocks before failing. We find conditions on

the shocking processes and on the ability of the devices to survive

shocks so that the time to failure distribution of the device is asymp-

Lotically an Increasing Failure Rate Distribution.

1. Introduction

The shock viodel discussed in this paper is rather situple. It

consists of a singlu device and a shocking process which acts ndc-

pendently of the device. As time goes on, tho cumulative damage done

to the device by the shockiiij; process increases and the probability

that the device is still surviving doecrvates.

We let Z represent the cumulative dawage at tiupa t, we 10L.L
T be thca ifutiu of lioh device a-, we let LC ) 1P(T > t). Theni

P(T > tI1Z I(t) --r f is somi no-icreasiig Borel ateasurable

fuac iotl wappiiig E reals into (t, 1J. So Clho probtabiLy of theL ovunt
(-T > L) is coitditionially indepondetit of L give~n Z~

1L



In 63, [1l] and [8!, Z~ was taken to be a renewal process.

Symbolicaly, Zt N where N is an ordinary renewal process.

Lettin P t
Letti k P f(k), k > 0, the problem is now fully described if we

know the sequence ( kJ and the interarrival distribution of Nt.

In this paper, we will consider the cases where Z tis an ordinary

renewal process, a generalized renewal process or the sum of Brownian

motion with drift and an ordinary renewal process.

2. Distribution Classes in Reliability Theory

In reliability theory it is often important to classify H.

where H is some failure distribution. Knowing which class H belongs

to can tell us about its shape or about the form of the optimal main-

tenance policy.

Definition: A probability distribution H1 on (O.,a) is increasing

Failure Rate (IF'R) if R~~)is non-increasing in t for x > 0o

where 11t) =1 H( 1t) .

If It has a density, the above definition is equivalent to

non-decroasing, in t for hi some version of the density. A distribu-

tion 11 is 1FIR if and only if Itis log concave.

Definition: A sequence (P1( is a probability sequence if P> 0,

all k > 0, P< I and Pk non- ine reas ing.

0 - k



Definition: A probability sequence (Pk} is discrete IFR if Pk+I/Pk

is non-increasing in k,.

Definition: A distribution 11 on (Oco) is Increasing Failure Rate

on the Average (IFRA) if R(t)1/t is non-increasing in t. A proba-

l/k
bility sequence (Pk1  is discrete IFRA if Pk is non-increasing in

k.

In (61 and [i], Nt was assumed to be a Poisson Process, The

authors showed that if (Pk3 was a discrete IFR(IFRA) probability

sequence, then for O\

(A) k

k-k.1 k(A) ,.i. . .....,

kk=O

P( k) PkEP A0

II is IFR(lFRA).

In (8], weaker conditions on Nt were found so that f k

: is a discrete IFR(IFRA) probabiliy sequence thun 11 is IFR(IFRA).

Sumary of Resutsf " lite conditions oil Nt it% (8] while morc general than those of

or (1], are still restrictive. Tito reader will-note t [oh r ally

ordintary renewal process N with interarr-tVal LM.S (Xkj with

t .kx V ni ld~ atid varX 1 -avu~ Lilac



Nt - t d _.>N(O, I)

21 t/

N(OI) is a random variable with the standard normal distribution and

d > represents convergence in distribution.

This result, the Central Limit Theorem for renewal processes

tells us that the one-dimensional distributions of many renewal processes,

including the Poisson, begun in some sense to resemble each other as t

gets large. As the pertinent theorems of [61, [1] and [81 make use of

only the one-dimensional distributions of Nt, it seems possible that

Limiting results, of the nature of the results which made assertions

about H given the form of the [ } sequence, can be derived.

Now, in practice, it is often the case that we will be considering

a device which will almosL certainly susLain Lens or hundreds of shocks

before it will even be remotely possible that the device will fail. 1i

this is the case, we would be justified in considering the shape of H[ for values o L which are large compared o he expecied interarrival

times. Indeed, Lhis primarily what we do in this paper.

Definitton: A function - is asyulptotically log cutcave :Lf thore

exists a log concave £uction 4 with thu property thaLi lir L 1.
A disLtribuion It is AsympLoLically JFR & L is aisywpLtLicdLy lg

! :! '.: lConcaive~.

We will filld cuoditios on N aid (P o OWL L) t;
L k E

is asymptotically log cu.c~ivi. We will more g envrilly find c iditLiviis

ll',.



on f and Zt, where Zt is either a generalized renewal process or

the sum of a renewal process and Brownian motion with drift so that

H(t) =Ef(Zt) is asymptotically log concave. In all cases, we will

find explicitly, the asymptotic form of fl(t). The major results of

this paper are found in Section 11. We will first consider how different

functions f arise naturally, where we assume that Pn+/Pn e-

T > O and f(n) = P In order to do this, we must first study regularly

varying functions.

4. Regularly VaAcying Functions

Definition: A positive function L defined on (O,w] varies slowly

at infinity if and only if 1 as L -4w for every x > 0. A

function U varies regularly at infinity if and only if it is of Lhe

form U(x) x L(K) with L varying sluwly at infinity and -< <

Leumwa I.1; I t L varies slowly at infinityo tholn X <L(<) <", for

any tiUxd c > 0 and all x suficietly large.

Proof: lhe pronf is in [], P. V-0.

.... 4.t: ) ., L aS t UtlifOlaiy inl fiiLt iltlrvals

0 < a x < b.

Proor. Tite prouf is il l[J, . 2''t

[.,,,;.5



To show that L is slowly varying at infinity, it is enough to

show L(t) i as t-w for 1.<x<l
L(xt)

We will be considering functions which are slowly or regularly

,i : ' -r x ,
varying at infinity and functions of the form f(x) U(x) e- where

U is regularly varying at infinity. A reference for regularly varying

functions is (7].

When do such functions arise in the context of our model? Speci-
kyn

fically, when is f(n) P of the form, f(n) U(n) e rn with U

regularly varying at infinity" We deal with this question in the next

section.

5. The tPk) Sequence and Regularly Varying Functiuns

If any function T that we are considering is only defined on

0h non-negative integers, extend it to 1R in the following manmer.

Lot 0(n) log dh) . xteund L o It~ by linear inLonhiolation. Let

(,) .Pt) So if ' is log Concave on the non-negativU integers,

then the extension of -1 t o IR is log concave on I"

:Teoe Supposie P/P 11+( I 2) and a n ( 11 N OW

.> U. it a > -1, all n, E11,0 g( 0) 01 u'1 o fn) # 1,a k)
. I

is slowly varying at infinity and

0 11, k4 U

Ii i de uasin g 8(n) is log concave.

[



Proof: Note that

-:i k k+ I

log( -x) k - for x > -1

So for M sufficiently large, n > M,

V log( ) + ,a a ' - - 7 a

"l k=-M+l k-m+ 1 l

N n
Slog g (n) < F log(l1 ) + 7_ ak) k+ •

k+l IM+ k

As

7.a Ia1k1<co, la kI. ,, la 1 < ,

kk'MM+l k M+l k kM+l k

it follows inmAdiately that

u g1) <rn g(k) >0

Lotting M xa.* 0 x < 1, W. iiAvC

It.I lug 11 log~ g(xu)j i ~ I~t~I <ILI,

So,

lit I oigg() - log 9(X11) !2 r liI o
I. 4W it Ka k



we have that

lin !log g(n) - log g(xn)il 0
n c

or

lir ( 1 for any x C (0,1)

So, g is slowly varying at infinity. If a is decreasing, so is

g(n+1) so g is log concave.
g(n)

Theorem 5,21 Suppose that Pn+P/'n e - r( 1 + 'Aun) whnr '~n=O

> 0, and a./n > -1, all n. Then g(n) iq a (n) er'n P n1 ' L(n)

where L(n) is slowly varying at infinity and

0 < l L(a)< ) in .L(u)<

If 0 > 0, g is asymptotically log .oncave, and i£ an. is lon-incroasig,

g is log concave.

Proof* Lt

k~ k)

a 1



We will first show that g(n) O(n) £(n), where £ is slowly varying

at infinity. For 0 < x < 1,

, P -a a, ?

k=[xnj+l - k [xnI k: k [xnj k

<log 0(n) - log O(xn).- [log g() - log g(xn).l

1k "k "' I .I II "k 2 a 11.
k.=[xn]+l k[xn I k" k[xn] k"

Ltting n -)Wt each of the terms on the left and right-most sides of

the string of inequaillities goes to zero. So

lir [log tO(u) - log O(xn)] - [ti g g(n) - log g(xn) ()
t

i. •404901 :1 
orr

•li a I , t " O .x I¢ .

: " ~ ttng it) . lg(n), we .4ve that

"l iw 4- I , n-; •

It •

Thiv ll ceu' to iihow that f is tlowly, vat,yini at iillinity.

Kulat i lg an by N tit tv abv t'iv qir -oIf t*it uaLiLtit ls JAiv,':

<Wi



-K < log n) K, with 0 < K < 0 < K < co.
X. (1)- ' 1 2

So,
)):-K

£(,) -KI. -K,,

Xz(M) L < J( n) < ( (M)

SO,

0 < urn S'(1) I Tm S,( 1) <
fl -)C o U ,o

We will now show tLLat 4(n) =n Q(i), where Q i slowly varying

aL infiniLy. For 0 < x < I, n sufficiently large,

1.1. 1 p 2 . n I

kw. tux+ l k7. nx] It' " kij k1 "

< lo P(1) - log 0(rn) <
It L~j~ ON717

or,

: " , ,,,j - k> ' " _ iii !

- - ..L~u. .
-*1 -

SLcttg n WC% Uw UIU tL.

S1or 0



Letting Q(n) (n)/n , we see that Q is slowly varying at infinity

and it is easy to see that

0 < lim Q(n).< lirn Q(n) < L,)

P PSo .(n) Q(n' n and g(n) O(n) £(n) Q(n) X.(n) n -: L(n) n

where L is slowly varying at infinity and

o < i (n) _ ir L(n) <c
n - - . :, ..-)

If a n/n is decreasing, g(t) is trivially log concave. For the case

of ' > 0, we omit. the proof that g is asymptotically log concave.

-.. Preliminaries

In this section, we review the notation and ist the assumptois

we will make. Especially in the next section, we may not make spec i ic

note of the assumptions that are being made.

a (N t 0 O) is an ordinary renewal procesu with inte.r-arrival

times [ ?X . , EX Val V' is n-a I cv.1 ' ,

) EcSX1 L'[ ists [i some neoighborhood of Lhe origin.

c) When we considur Er . , then wQ will assumeu there exists a number

( ') with the properly that "t , F(ds) 1.

iLi
*1.



NW,

d1) S is a generaivied renewal process wi Lh
L

0. N 01

SS

ThetY sequnc s . wiher Y1  KCKO0, andv~e)

I')iOur puain som opnc ne Pboho of~ boh origin. loin frm

11e x XMX ... wh(k 111 wis hv qv ot nu-Kdv

nvgaLlve real numiburs. ; **.x,,x*" where

i~ i thli un, I 1-algubra Oila

kI

heeP 0  is the probabili Ly uieanrv LA t~ ~ 5O ae ihF

P is thlen unliquely exivnended to ;.Aniy i :is.f IIl .he ilif

-. . *),whero v~ih

anld X ) .



Finally,, define a shift operator £ 2* 2so that

Lb w0  c5, . w, So inl pZrLicular,

N () 6) +I Oil (X1 (cD).

g) Bt is Brownian motion With B N(, ai)2

h) If we consider tN B~ + ct, then we always assume that

I, ~1Q 14x+ c > 0.

i) L will always be a slowly varying function at infinity on 3t+. L

is extended to all of IR by letting L(x) I for x < 0.

7.Large Deviations
n

Let S n X1, t2%lJ) X i, i. d., EXI <± Var X, o < ~ Lot

r- be the distributian of Is -n,.;)v4,

Theorem 7. 1: If it(i.) -~f e~F(dx) eXiSLS for all ill some

iterval <i F' atid if x vaies wi th it in such a way thatL

Is 11 x~ U(n / ,then (1-I? (x))i(1-iR(x)) .- ~1$ Where

R(x) d cu,

Pr :Tito proof is ill 71 .~9



8.Technical Lemmas

Lemma 8.1: lim E[L(N L)/L(L)1 1

n
Proof: Choose M > V1,~ + I, S =>X..

n I

L(N)]
A) EimN >Mt

< lim, E[NE tc; Nt.>Mtj any 4E > 0) by Lemma .
tt

< lim E[N~ N >?t

01)

t -~n=M

k ~ TI; 7. (0nl)tP(S( LInMntl L

Lt n;

Jill 1, and tJare i.i.d -Also) EIC10 ~ for all a5 iN n som

neitghborivood containing the origin. Lot S 11 X. Then

P*i.



urn ~',(n+1)t P(StJK)
t wn=M

< lrnim (n+1) tP(S? > (n-lt

M (nN+ )t

t n--c Vjn7t4:

C O 1/ 1/7')

(Sn]1/7 1/7c>
<r TL ( ml~ ____ tn > )

t -4u C44 dn tI1

S~(1b rn 1/7 1/7

2((01 > nd tl L ((,1)~e

L 1 7n74

O-x

For x sufficiuliLly large, P(N(O,l) X) U" . sop



(1b) Tim' n~.PN~,.i~c

co

00(X n=M

- (.ib) T i t f 1/7 7 cp(c ~v)d

t -4Go V (~14-1)

CV dv

as f v 6  dvco
VZO

B) For < I/.L

rr L(N ) V) L~Pt4, ) by Lauma

Clearly,

t -0 v 
t

U JL ~X 1x a 1
hi~



t 00'

< 7rn t~ p(S[t> ct) For 3ome c > 0

- C S[ltl 1/7\K url t > ct)

K 1-i-) lrn t L P(N(0,1) > c17), by Theorem 7.1

t: *-l/7

So

LL(N )M)
in) E~ N~- tL U)~I UfC ML 0.

t.t

I ~ tPb < N L < 4

Comnbin'ing A, , ad C giLs the deired ruiIt .



Le =a 8.2.
[L(Nt + B + ct)1

lir E L(t) "1.t -00

Proof:

A) Choose M>O0 so that c>1
2 ~

- L(Nt+Bt+ct) ]
Tim r tb() ; N + B + ct > Mt

t -*
< i [(N + IBtI + ct); N + B > mot], mo  c

t *t L t )

im E(N +>..... + N (~ >BLot 0)

:.E-N' I > )+B t > !-

tMt

From Lemma 8E N,

t(4 t 0,0
+ Mi N > MO 0 + lmE B1 > L()

Then~

18

t t

nn~~u ma nn m n m~um nm u mAlrnllnulenu ]-n II N i m l l



t-00

(B >1 E(NL)
t -00 L 0

1 4cO k P(N(O,1 >M&V) T +) e x p(-mV7)

tLL >C 22a-*

T tP fro Lemi .

- 03

('BL' L -i

t 4co0 a

m 19

Tim $L -2 0fo Aa8



Each of the above limits is zero from A) or the second part of Lemma 8.1.

C) So,

L(t) j

t- > r ODN qLIc() +Btt - I
E[L( Bt) ;tN. c M

t -t

as~~ L(bB+t/~)-* nfrl nt o N b + B i-ct<<t).
t~~ -4C

li Nb <t + B + Ct <tt

Now

N t C B

So,

Ni +(c~ B B + caKL I
L 1~

iwovin+ Ch aoisa

t2



Lema 8 ;For k > 0, k an integers

Proof. Using the notation of Section 6, on {X1(W) t)

n4

on (X(W L),fot (Nx ( ) 0.c).

The proof will be by induction. It is well known that the lemma

Let k n+l. Let (L [

E[Nn") E[Nn ; K > t] + E(N ;X < t~t L 1 1

n+1 s1

0 V E~[ itN' f) (nIl I\ X(w ti~x

114.1 1)+1
1 - N )I

ni- I L 'It ~
L:.( 14



?oo

Recognizing that this is a renewal equation, and letting R(t) F
(n) th

where F is the n fold convolution of F, we haven

t V n

0nl ( t) f f Y ('kl) 4k(v-s) V(ds) dR(t-v)v=O s=O k-O

nl ( t ) n k t

n k t~l

<r t v) dR(t-v)

-o tn+l - l--m l f0 O k , ,-( RtV
Sk=O v=O

n- t

Limn 0l(t) Ir - n+1 4k(v)

-< i-it n- - -  f (k) (v) dR(t-v) , for anyf d>O0
n~' -77

Now,

f - dvK fr k<n-2

n t

I M 
V

t +- im 4O(V , 1 0n1 D d~-) o n

7+ f k(k(V)t k:n 1i tn ---- C

V C V

t t", t vz[4

. INn-,

lim 7MV J(-) fo n
L L,.-

I l 11 I I l ! l l l l l lW [ll 1 ll 1 1 l l 1



< 1i f V" dR( t-,') s some > >0

< im n-1I some C 0

Finally,

T~ 1 (V) dR( L-V)

t n v)v

TIM f dR( L-V)
L -i0 V~i V I

vnt 11

ii4~) v dv

whe~r M if, Chun arito rl 0.W aro bonI v6j dktt-v by
LL

c~ ~, fV V ~ because A( L-+1. R( t) ~ So,

dv Ti-~ %,
1%Il L 0 It i

L 4



t)m ~ n+1) (n+ i)
1n+1 n+ l

As Nt' - 1/~ a. s., N (it7 a. s. So by Fatou's Lena

E(N)
urn t in

So

lim ~

E(N (N/

E(N") (N

Tim - I+C,)" 7urn 1(N'< t/,, (I+c))

it L

f or atty' > 0 and at > )it Oki ineger#~

LL



Since E > 0 is arbitrarily small the lemmra is proved.

Lemma 8.5: Let f be regularly varying at infinity with exponent P.

Then

/f(N)

liin E y.. ~
~~ f( t) -

Proof: By Fatou's Lemma,

Urn E (Nt) U E( NP L(N~) l

By 1iders Inequality,

(f(N\ (E(N 2 )" /2 2N

li-M E <Kt) -M V -2 ) li E (2 t) 1/
t - 00 Tt 0t

'SFrom Lemma 8.4

(EN -1/2 1 /

and f rom Leimma 8. 1,

2
E(L (Nt))

t- L t)



Lermna 8.6.

E(Nt + Bt + Ct) n

lim -=1
/ n,; t -4 C ( t/1-1 )

I0

where + 1/(-c) > 0.

Proof:

: k t~ct)n-k

E(Nt + B + c t ) n  n E(Nk) E(
lim m t/ t nk

t -4 OD /o t OU lck=O (t/ P) k n-k)fl"[k\n-k

n 1A k

t - (n 1

o)k)

Lem 8.atw

E(N (Nt4 B i.V)

Lm- I
t -/%4O) P

S. ,...2-.*.-

Proof: Thu proof is a simple extension of the previous Iowa in h.
,: same way thaL Lama 8.4 is used to prove Lamma 8..I oaowilling

° vt~o consider complex€ noioors, we could just as well show that"

E(N lq t I. B t + CO)O
" ~~Lim --- 1

tf:. .( / 0)



9 Asymptotic Limits of E[e " Nt ]

We will now consider the behavior of E[e 'Nt].

SX
Lemma 9.1: If E[e < for si < T/, r > 0, then there exists a

number cp(r) with the property that

s0
Se " f e (~ F(ds) =I

• s=O

If 0. 0, O p(y) always exists.

Proof: Let a(rv) e r f e1 s F(ds), r > 0. For 0, IV < ./,

a(yv) is increasing in v and continuous (possibly only left-continuous

at V

a(r,v) e e *VX] > e" eV by Jensen's inequality

SSo a(r, r/p) 1 1. Also, a(r,O) 07r < 1. So there must exist a

number WJ(r 01t 0 < *()Kr/j. with the propefty that~ a(y,~~r) 1

i ' s n-dut-aktrte, e~r KVX~ > e'-eV1 0 u o in faCL V(r < r/g.

If ' 0, T(y) always exists unless F(O) 1.

Ttiu r ei . Undor the conditions of Lunima ).1, lial ElteY~] 0 (
t -

exists and is some positive constalf c.

i- .I



Proof: On (XI < t01

erNt(w)=ePrNX) (OW) + 1)] ,

on (X1 >t)

er t(u)

Letting *(t) Ete9L) we have

I *(t) P( > t) + e' E[E~exp(--CN xl(W)(~)1~)~I~I

+ 't ~ e-r E[1(( <l E~exp(-N X ((W) 1x1

t
- ) + C-r f *(t-s) F(ds)

S-0

Letting G(ds) TF(d.) "'r~ and noting that G is a probability

I measure, we got

S=O

Lot

28



Assuming for the moment that P(t) ecP(r)t is Directly Riemani

Integrable (FRI), Lhen by the Basic Renewal Theorem [91] P. 191,

f sGds
=0

f sG ids *0T (X e Co)

t Co
~ <r,~.Therfor, e Bf sGT)) 3 <,sof Gd) .

s=OO

ords 19].Xe'~rX

No, p()< p s o wha canr chos 0,ufcety ml ota

to Co

Thssr o eea arumn is fudt freapl 2)O7

Showingu~ tht =tO

P(r) IF~) dF

0 < ' T') f 29



Using Feller s notation £73, P. 561, it suffices to show that

;r(h) La(h) -das h-)O0 where q(h) =h Y a~(h) =h
_.O k--O

where ' TK is the inf (sup.) of eqt'~(r)t on [(k-1)h, kh). So

a(h) =Ii P((k-(kh) q)(kh

000

h)n hi 7, P~(k)-(k) k-p 1)kh

k-- 0

-ij lim 1h) e'((k 8 P(r)h l 1
h 4 0h 0 0

00

L im (e h_1) f (t) e)rt d L
It 10 t=0

=0

as

h~

so iP(t) is (yRt

30)



q,'~

00

Leima 9.5: Let =f s dG(s). For r> 0,
s=0

' r

For <0

Proof: Choose r > 0,e rE[e(rX 1. By Jensen's inequality, and

noting that g(-) ec* is strictly convex, and that X is non-degenerate,

we have

er eq(T)EX < 1 ~p o (r) 4 1

or cp(y)/-y <

rG E( Ex ecP(Y)X] - E E[orp(r)XI >

The above inequality follows as X and eT ere associated. See[]

for a proof and definition of associated random variables. Actually,

the inequality is strict but We Will omit the proof.

10. to~ Le and Uniform titraIuijjit

We IwIOW tha&t 0440 ))t er t)~ as t WC. will show that

the above family of randow variables are not Unikorwaly ilegrable.

F~urther, we will find a SeqUORCO Of SULS LAL) With P(A) -40 as
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t - with the property that

eP ( Y) E[e'- t; A 3 c as t -
t

Lemma 10. 1:

.t t 1limE-- '--( t> 0

i';i Proof.

n' t

N N u

(t/ ,) n

~< e- r t / ij,+ ( ( r ) t E[(- ( €t 3

t/As q(r) - K/ < r)t 0. Since lim E[Nn/(t/M) n ] n 1,

t4 t b~

.he lemma follows.

Theorem 10.2;

'nm E (%t ) ) = (' for u > 0

Proof: Note that 010 constant term on the right-haud side is

not C,2

n O ) rn t (  )  . r( . )" exp - N .X ,

* . .

,:. . ..... . .• . ,, ,.,,,-- ,. .,.,,,., , ,; '-,-.,:".r , . # .''/ ,. :, -" . " .-3 2- "



On (X,1Gn) >

0 n > 1

So for n > 1,

n

-on (w)(w r Ftk

on (X (W) >t)

Letting t) E[N~ er t) k > 0,

k~ f

n~~~~~:= k= kG 1txlw ds).) )I



This renewal equation is very similar to equation ()found in

the proof of Lemma 8.3. We can mimic that proof as the result we wish

to prove for n -. 0 is true by Lemma 9.5.

Theorem 10.3: Let A C:Q
t

N
A (w <.S± et t I

where 0 < e.< 11/4 1 / &G!. Then

lrn ep(r)t E~e-rNt; A) c

Proof: First note that P(A t -*0 as t -o.For t > 0, a > 0, let

111(a) JLe(r) t ECa erNt; t a

U, ds)

C -1

as a measure on R + just as we cani interpret a probability distribution

as masure on .

Specifically.) for A a Borel measuraible subset of At P we have

it t(A) t a'rt* P(t ds)
r s



Define a new sequence of measures (M on IY with

t t

++
where A is any Borel measurable subset of I n A xR:x/ )

t > 0. It is also the case Lhat Ir im M , 0 1.
t 4

From Lemma 10.2,

ELN e 4 t for any n > 0 as t -i c
n nI
tn

This is eqialn in our new notation& to

1 Sn H (ds) 1for any n >O as t- .
t 34. n

By Lewua 10.1. we can assert that

Ht~ds) 0as t n >

N4ow,

f- vn 1 1I(ds) -j fi tv) -d1~ t

SI v t d1I(tv)
v=O

v dM (V)



So,

Vn
, ";.I lran f n  

_~v 1 ' n
lira f V dM(V) n > I

_ n>
t -) =O 'AG

and

urn I v'n dM~()O ~
t -? t

tNow, he sequence of measures (M has a subsequential limit

measure M from for instance p5], p. 85, and M must be a probability

measure as Mt[O, [ /1 ] -*i as t-o .

So, N ->M for (tk) some increasing sequence going to infinity,tkk

where 4 represents weak convergence. So,

urn V' dM4 (V)nt
t V=WO kP'G k

Urn f 'V ndM ~v)
t k t( V.UO t

~f V d4(v)

J- I ,
VZO

whore Lte 13OXt to last equality follows from t 4 ], p. lit the second

equality follows from Lama 10.1, nd the last equality follows as

MI /00,u~ 0.

Let (Y be a sequetie oi random variables with probability

uari;re C , whee . (rte C O..0 ) L. Let Y be a randow variable

t' tj .
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with mieasure M. Now, M -M and c -4 a s t os o i t is easy

to see that ctM tk d
k k tk

BY =ELY; Y~ <-]

lrn ELY ;Y <
St~ t

OD k
1

G

2 22
SiViary YY EY l/IY±G =Theefore,

So Y V 1I a~s., or b((1/PG]) 1. That is, any subsequential limit

me*asure of the sequence of measures CM Iis simply a unit measure at
L

1p This implies that

G

but this is identical to

t ~t

t ~I



Proof:

.. Np

lim ep(r)t t
t -0 t

7, Np

> lim e L ;Atj
.. t ->pA t

> > lir e(T)t E[e'rNt; A

t -- W

1 NN

w e -re t "N t r

< l T .ep(r) ' [ e- "~ A>.

+7 Ti.Lpr C -

N t,.N

The first term is bounded above by ((cr)/tG) V The second

und third ters are zero by Theorem 1O.3. So the rusult is proved.



Theore~m 10.:

Npy~ NLL(N) tP
lim et IC k for P-

where L is slowly varying at infinity and lim L(t) < l, ur L(t) > 0.

Proof: The proof is almost identical to the above proof.

Theorem 10.6:

~ ecP(r) t (n + ct reNt] (n+c'

where n >0, and -+ c>0.

Proof:

ur Cp(r) t+

k~ n-k
n Nc~r E(B +ct)-

t

n
1ck-+c)~c

259
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i.

Lemma 10.7:

lir E ((N + B + ct) V O)p e rNt\ + C)p c

for P> 0 and i/ G + c > 0.

Proof: We omit the proof.

Theorem 10.8.

n

lira e( ) t r t  .

t 00 tn ' L(t)

C( +c) for G'+ c > 0 >OP

and

- o < lim L(t)< ' L(t)< w
t -4Go t -4

tv..

Also,

Y.)t~ ~~ 0(tBtc ) L(N +B +ct) -~

t t PL( Q

i . (-I P )
+ C) , P > 0

Proof: Wo omit the proof.

-" " ---
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11, Asyptotic IFR Distributions

Theorem 11.1: Let Pk1/Pk e- as in either Theorem 5.1 or 5.2. If

Efe I ,then for Rl(t) P(T > t) EP t.Hisaypocly
HNsaypoial

IFR.

Further, if mk+1/P -4 e-r as in Theorem 5.2 and P > 0 (see

Theorem 15.2), H is asymptotically IRF.

Proof: In the case of Theorem 5.1, P n =f(n) =e L(n). Extend f

and L to FI in the previously specified manner,

From Theorem 10.2, with n 0P

it)=E~e~N L(N) L( t) e c

which is log concave, so H is asymptotically TFR,

in the case of Theoremn 5.2, f(n) P ~ a ' 1 L(n) with P > 0,

Extend f to R(~ By Theorem 10.5,

and ie)E[N P L(Nt) a-~) So, 11(t) &-q)(r)t t P L(t) c/IaP
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0P

If Pk/P J e-, L is log concave, and e"p(Pr)t and t are
k+l k

log concave, so H is asymptotically log concave.

If we only assume that Pk/P - eTr if p > 0 i is still
* k+l'k

asymptotically log concave. In either case, we have H asymptotically

IFR.

Theorem 11.2. Let Pk+i/Pk e r  as in either Theorem 5.1 or 5.2.

Let f(n) = Pn and extend f to iR+ in the prescribed manner. If

Et Y/)xl) < , then R(t) =Ef((B t + Nt + ct) V 0)) is asymptotically

log concave for c + 1/t >O.

Further, if Pk+1'/k *-b e"  as in Theorem 5.2 and p > 0, H is

asymptotically log concave.

Proof. The proof is almost identical to the proof of Theorem 11.1.

Simply use Lemma 107. instead of Theoremo 10.4.

12. Generalized Renewal Processes

We can prove the same sort of results found in Section 11 for

the case where f(t) Ef(SN ) and f is as in Theorem 11.1.
t

We will list some o.f the lemmas and theorems needed to get the

same sort of results. The details aro messy and closely resemble those

of previous sections, so we omit all the proofs.

Recall that,

ii:: !



N t>

t Yk N ~

1 tKO) 0 n ~SI

were the (Y sequence is i~i.d., Y K (- 0 an Ee

exists for all s in some neighborhood of the origin. Let =y EYl.

Lemmna 12.1: SN

4.9]=(4 forP>0

Proof: Omitted.

Lemma 12.2: LS

SL(%)
I..m

Proof; Omitted.

Let * =f cor K(d.). We will assume that q~y) exists.

vliiam~ y) k > 0

Proof: Omitteid.



A

Theorem 12.4: For f as in Theorem 11.1,Ht EE(S N )is asymptotically
t

log concave.

Proof: Omitted.

So, in the case of our shock model, where the total damage can

be represented as a generalized renewal process, the time to failure

distribution ~iis asymptotically IFR under the appropriate conditions.

We have not considered the case of x(t) = 
5  + ct +. B, with
t

A =t Ef(X(t)), but it is not hard to see that similar results hold

for X of this form.

13. The Sub-Exponential Class

This section is based on [23, Chapter 4.

Definition: The sub-exponential class consists of all distribution

functions F with F(O-) 0 and

(2)

t-*

F(2 is the convolution of F with its density.

Examples of F include
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Vr - Ft) ck k >O0

B
1F( t) e ,0 < B <I1

.t/log 2t
1 F( t) e

Roughly speaking, a distribution F is sub-exponential if

I F(t) goes to zero slower than any exponential distribution. Let

Ii we let F ~ ,we ge the following theorem.

Theorem 13.1: If F E ~,and 0 < i < 1, then

(l-) -R Ct)

Prof In L1, p. 150.

k
Y.Terem 13,2: Suppose , k > 0. Suppose N is a renewal

process with F C ~ Then i() EP (lF())(l))

Proof. fl( t) R ( t). Simple arithmetic and Theorem 13.1 yield the

theorem.

................. 5
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